Direction of Arrival Estimation (DOA) with MIMO Radar with Compressive Illumination

Emre Ertin

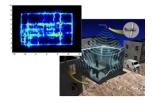
Department of Electrical and Computer Engineering The Ohio State University

Specialists Meeting on Compressive Sensing applications for Radar/ESM and EO/IR imaging

Outline

Wideband Multichannel Radar Motivation

2 MIMO Radar


- Problem and current approaches
- Proposed solution
- Problem statement
- Simulation results
- Hardware implementation


< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Motivation

Wideband multichannel radar-Emerging applications

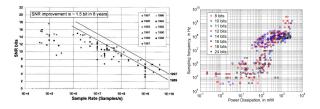
- Networked Sensing
- 3D/4D Imaging with Real Aperture Radar
- Massive MIMO

.∃ >

SET-265 3 / 35

High Resolution radar imaging

To achieve high resolution in range-angle of arrival domain, we need


- large illumination bandwidth leads to finer range resolution $\Delta_R = \frac{c}{2R}$.
- increase in transmitter and receiver systems lead to finer angle of arrival resolution $\Delta_{cos(\theta)} = \frac{2}{N_T N_R}$

Motivation

Wideband Radar Technology

Applications stretch the resolution and bandwidth capabilities of ADC technology

- COTS ADCs have limited resolution at high sampling rates
- Power consumption quadruples for additional bit of resolution [Wal99]

- Sample with available technology use signal recovery methods for high resolution
- Radar sensing is not just receive processing: Illumination + Receiver Filtering+Sampling
- Challenge: Design transmit waveforms and receive filtering to shift burden away from ADC

Outline

Wideband Multichannel Radar
 Motivation

MIMO Radar

• Problem and current approaches

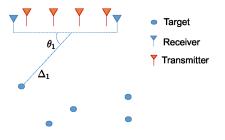
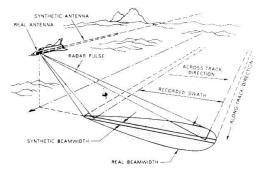

- Proposed solution
- Problem statement
- Simulation results
- Hardware implementation

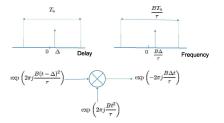
Image: A matrix

A B > A B >

Problem


- We consider collocated multiple transmitters and receivers with a common reference.
- Goal: Estimate the round-trip delay Δ_i, angle of arrival θ_i, and target reflectivity x_i.
- **Approach:** Utilize compressive measurements from an incoherent domain.

4 1 1 1 4 1


Before CS there was Stretch

- Stretch processing considers a fixed range swath.
- Uses LFM waveform on transmit and downconversion implementing approximate match filtering.
- Converts delay estimation to tone estimation.

Stretch Processing with Chirp waveform

- Stretch processing considers a fixed range swath.
- Converts delay estimation to spectrum estimation.
- Sampling rate reduced from $B B \frac{T_u}{\tau}$



Can we design illumination schemes that further reduces sampling rate to exploit sparsity in scene?

Stochastic waveforms

Samples from a Sub-Gaussian distribution used as Tx waveforms [SNR15]¹with good theoretical guarantees [KMR14]². **Issues**

- Memory requirements
- Additional reference channel
- Power amplifier requirements due to high $PAPR = 20 \log_{10} \left(\frac{|x_{max}|}{x_{rms}} \right) \approx 15 dB.$

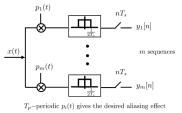
イロト 不得下 イヨト イヨト 二日

¹M. Shastry, R. Narayanan, and M. Rangaswamy, *Sparsity-based signal processing for noise radar imaging*, IEEE Transactions on Aerospace and Electronic Systems, 2015

²Felix Krahmer, Shahar Mendelson, and Holger Rauhut, *Suprema of chaos processes and the restricted isometry property*, Communications on Pure and Applied Mathematics, 2014.

Modulated wideband converter based systems

- Transmitted waveforms: Gaussian pulse[BIE14]³, FDMA and CDMA[CCEH16]⁴.
- The periodic waveforms produce a mixed version of Fourier coefficients[GTE11]⁵


Issues

- Multichannel
- Sensitivity to crystal filter response
- Parallel channels with filtering and ADC required

⁴O. Bar-Ilan and Y. C. Eldar, *Sub-nyquist radar via doppler focusing*, IEEE Transactions on Signal Processing ,2014

⁵David Cohen, Deborah Cohen, Yonina C. Eldar, and Alexander M. Haimovich, *Summer: Sub-nyquist MIMO radar*,2016

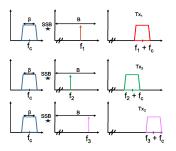
⁶K. Gedalyahu, R. Tur, and Y. C. Eldar, *Multichannel sampling of pulse streams at the rate of innovation*, IEEE Transactions on Signal Processing 2011

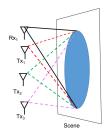
 $\prod_{T_p} M_{T_p} \qquad \text{and many}_{T_p}$

A B A A B A

Outline

Wideband Multichannel Radar
 Motivation

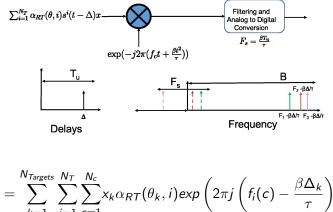

MIMO Radar


- Problem and current approaches
- Proposed solution
- Problem statement
- Simulation results
- Hardware implementation

A B A A B A

Image: Image:

Proposed approach -Multi-frequency modulated waveform



Transmitted waveform at Tx i: $s^{i}(t) = \exp\left(2\pi j\left(f_{c}t + \frac{\beta}{2\tau}t^{2}\right)\right) \times s_{i}(t)$ $s_{i}(t) = \frac{1}{\sqrt{N_{c}N_{T}}}\sum_{k}^{N_{c}}\exp\left(2\pi jf_{i}(k)t\right).$

Received Signal

Stretch processor samples at receiver

$$y(n) = \sum_{k=1}^{N_{Targets}} \sum_{i=1}^{N_T} \sum_{c=1}^{N_c} x_k \alpha_{RT}(\theta_k, i) \exp\left(2\pi j \left(f_i(c) - \frac{\beta \Delta_k}{\tau}\right) \frac{n}{F_s}\right) \times \exp\left(2\pi j f_i(c) \Delta_k\right) + w(n)$$

Received Signal

Stretch processor samples at receiver

Stretch Processing: Range x \Rightarrow Tone Estimation MultiFrequency LFM: Range \Rightarrow Structured Line Spectrum Estimation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Discussion

Advantages

- MIMO architecture with undersampling in spatial and delay domains
- $PAPR \approx 3 + 10 \log(N_c)$ dB to 1!
- Standard calibration procedures

Drawbacks

- Large analog bandwidth required for ADC
- Computational Complexity of Recovery

A B F A B F

Outline

Wideband Multichannel Radar
 Motivation

MIMO Radar

- Problem and current approaches
- Proposed solution

Problem statement

- Simulation results
- Hardware implementation

(日) (同) (三) (三)

Problem Definition

Given a scene with small number of targets $N_{Targets}$, we define


$$\begin{split} \mathbf{y} &= \int_{\Delta,\theta} \mathbf{\Psi}(\Delta,\theta) \, d\mu + \mathbf{w}. \\ \Psi(n,\Delta,\theta) &= \sum_{i,c} \alpha_{RT}(\theta,i) exp\left(2\pi j \left(f_i(c) - \frac{\beta\Delta}{\tau}\right) \frac{n}{F_s}\right) exp\left(2\pi j f_i(c)\Delta\right) \\ \mu &= \sum_{k=1} x_k \delta(\Delta - \Delta_k, \theta - \theta_k). \end{split}$$

We estimate the angle of arrival θ and delay Δ by solving

$$\min_{\mu} \left\| \mathbf{y} - \int_{\Delta, \theta} \mathbf{\Psi} (\Delta, \theta) \, d\mu \right\| \quad \text{Subject to} \quad \|\mu\|_{TV} \leq \tau, \quad (1)$$
where, $\|\mu\|_{TV} = \sum_{k} |x_k|$.

Discretization approach

- Range space is discretized with resolution $\Delta_R = \frac{c}{2B}$.
- The non-linear mapping $\cos(\theta)$ of the angle of arrival is discretized with resolution $\Delta_{\theta} = \frac{1}{N_T N_R}$.

$$\min_{x} \left\| \boldsymbol{x} \right\|_{1} \textbf{Subject to } \left\| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{y} \right\|_{2} \leq \left\| \boldsymbol{w} \right\|_{2}.$$

Recovery Guarantees (Single TX/ RX))

$\begin{array}{c} \text{Matrix Type of size} \\ M \times N \end{array}$	Mutual Co- herence	Spectral Norm	Sparsity for suc- cessful recovery	Minimum sig- nal strength	Reference
Random matrix with (<i>NM</i>) independent random entries	$2\sqrt{\frac{\log N}{M}}$	$\sqrt{\frac{N}{M}} + 1$	$\mathcal{O}\left(\frac{M}{\log N}\right)$	$\mathcal{O}\left(\sigma\sqrt{2\log N}\right)$	[CJ11, CP09, DS01]
Toeplitz block ma- trix with $(N + M)$ random entries	$\mathcal{O}\left(\sqrt{\frac{\log N}{M}}\right)$	$\mathcal{O}\left(\sqrt{\frac{N}{M}}\right)$	$\mathcal{O}\left(\frac{M}{\log N}\right)$	$\mathcal{O}\left(\sigma\sqrt{2\log N}\right)$	[Baj12]
LFM waveform modulated with $N_c \ll N$ randomly selected tones for single transmitter and receiver	$\mathcal{O}\left(\sqrt{\frac{\log N}{M}}\right)$	$\mathcal{O}\left(2\sqrt{\frac{N\log(N+M)}{M}}\right)$	$\mathcal{O}\left(\frac{M}{\log N \log(N+M)}\right)$	$\mathcal{O}\left(\sigma\sqrt{2\log N}\right)$	[SE15, SE16]

イロト イヨト イヨト イヨト

Recovery Guarantees (MIMO)

$\begin{array}{c} Matrix \ Type \ of \ size \\ N_{R}M \times N_{\Delta}N_{\theta} \end{array}$	Sparsity for suc- cessful recovery	Minimum signal strength	Reference
Toeplitz block ma- trix with $(N_T M +$	$\mathcal{O}\left(\frac{N_RM}{\log(N_\Delta N_\theta)}\right)$	$\mathcal{O}\left(\sigma\sqrt{2\log(N_{\Delta}N_{\theta})}\right)$	[Baj12] ⁶
N_{Δ}) random en- tries			
$\begin{array}{ccc} {\sf LFM} & {\sf waveform} \\ {\sf modulated} & {\sf with} \\ {\sf N}_c \ \ll \ \frac{N_\Delta}{N_T} \ {\sf randown} \\ {\sf domly} & {\sf selected} \end{array}$	$\mathcal{O}\left(\frac{N_{\mathcal{R}}M}{\log^2(2N_{\Delta}N_{\theta})}\right)$	$\mathcal{O}\left(\sigma\sqrt{2\log(N_{\Delta}N_{\theta})}\right)$	This work
tones per trans- mitter			

⁷Waheed Bajwa, Geometry of random toeplitz-block sensing matrices: bounds and implications for sparse signal processing, Proc. SPIE ,2012

Continuous Domain solution

We solve the following problem

$$\min_{\mu} \left\| \mathbf{y} - \int_{\Delta, \theta} \mathbf{\Psi} (\Delta, \theta) \, d\mu \right\| \quad \text{Subject to} \quad \|\mu\|_{TV} \leq \tau,$$
where, $\|\mu\|_{TV} = \sum_{k} |x_k|.$
(2)

We exploit the differentiability of $\Psi(\Delta, \theta)$ in the parameters to refine the support [BSR17]⁷.

⁸Nicholas Boyd, Geoffrey Schiebinger, and Benjamin Recht, *The alternating descent conditional gradient method for sparse inverse problems*, SIAM Journal on Optimization, 2017.

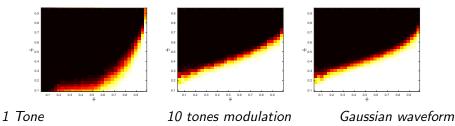
Outline

Wideband Multichannel Radar
 Motivation

MIMO Radar

- Problem and current approaches
- Proposed solution
- Problem statement

Simulation results

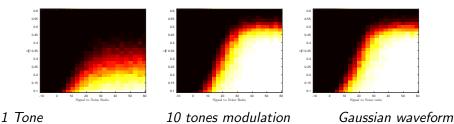

• Hardware implementation

(日) (同) (三) (三)

On-Grid results - Noiseless recovery

Single Tx-Rx system

Performance criterion - P(MSE < 1e - 5)


< 3 > < 3 >

SET-265

24 / 35

On-Grid results - Noisy support recovery

Single Tx-Rx system with $\beta/B = 0.5$ Performance criterion - P(AUC > 0.99)

SET-265 25 / 35

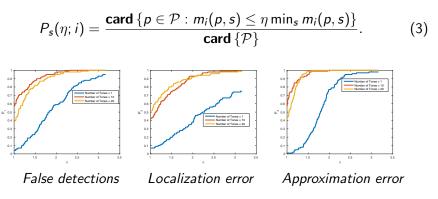
Off-grid recovery DOA- Performance metrics

We use performance metrics defined in $[\text{TBR15}]^8$ Given estimated model $\sum_j \hat{x}_j \Psi(\hat{\Delta}_j)$ and true model $\sum_{i=1}^K x_i \Psi(\Delta_i)$ $\mathcal{T} = \{\Delta_j\}$ set of true parameters $N_{\Delta_j} = \{\Delta \in \Omega : \|\Delta - \Delta_j\| \le 0.2c/(2B)\}$ $\mathcal{F} = \Omega \setminus \mathcal{T}$

- error due to false detections given by $m_1 = \sum_{\hat{\Delta}_i \in \mathcal{F}} |\hat{x}_i|$,
- weighted localization error $m_2 = \sum_j \sum_{i:\hat{\Delta}_i \in \mathcal{N}_{\Delta_i}} |\hat{x}_i| \min_{\Delta \in \mathcal{T}} \left\| \hat{\Delta}_i \Delta \right\|^2$,
- approximation error in the scattering coefficients

$$m_3 = \sum_{\Delta_j \in \mathcal{T}} \left| x_j - \sum_{\hat{\Delta}_l \in N_{\Delta_j}} \hat{x}_l \right|.$$

⁹Gongguo Tang, B.N. Bhaskar, and B. Recht, *Near minimax line spectral estimation*, IEEE Transactions on Information Theory, 2015.


イロト 不得下 イヨト イヨト 二日

SET-265

26 / 35

Performance comparison

Performance profile

過 ト イヨ ト イヨト

Outline

Wideband Multichannel Radar
 Motivation

MIMO Radar

- Problem and current approaches
- Proposed solution
- Problem statement
- Simulation results
- Hardware implementation

★ ∃ ► < ∃ ►</p>

Image: Image:

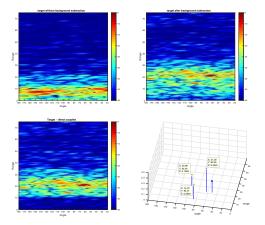
Hardware setup

DDS Transmitter -32

Stretch Receiver

(日) (同) (三) (三)

Hardware setup- TX, RX and antenna array



イロト イヨト イヨト イヨト

Experiment

Setup

<ロ> (日) (日) (日) (日) (日)

Summary and Future Work

MIMO Radar

- Extended compressive illumination scheme to MIMO radar and spatial processing
- Established theoretical guarantees for the sampling rate requirements as a function of the sparsity of the scene.
- Simulated and Measured Data Experiments reveal accurate recovery of spars scenes.

Future Work

• Calibration for phase mismatches between channels. Key observation: Unlike classical beamformers range and spatial processing is coupled.

- 4 同 6 4 日 6 4 日 6

References I

- Waheed Bajwa, Geometry of random toeplitz-block sensing matrices: bounds and implications for sparse signal processing, Proc. SPIE 8365 (2012), 836505–836505–7.

O. Bar-Ilan and Y. C. Eldar, *Sub-nyquist radar via doppler focusing*, IEEE Transactions on Signal Processing **62** (2014), no. 7, 1796–1811.

Nicholas Boyd, Geoffrey Schiebinger, and Benjamin Recht, *The alternating descent conditional gradient method for sparse inverse problems*, SIAM Journal on Optimization **27** (2017), no. 2, 616–639.

- David Cohen, Deborah Cohen, Yonina C. Eldar, and Alexander M. Haimovich, *Summer: Sub-nyquist MIMO radar*, CoRR abs/1608.07799 (2016).
- T. Tony Cai and Tiefeng Jiang, Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices, The Annals of Statistics **39** (2011), no. 3, 1496–1525.

Emmanuel Candes and Yaniv Plan, Near-ideal model selection by ℓ_1 minimization, The Annals of Statistics 37 (2009), no. 5A, 2145–2177.

- K. Gedalyahu, R. Tur, and Y. C. Eldar, *Multichannel sampling of pulse streams at the rate of innovation*, IEEE Transactions on Signal Processing **59** (2011), no. 4, 1491–1504.
- Felix Krahmer, Shahar Mendelson, and Holger Rauhut, Suprema of chaos processes and the restricted isometry property, Communications on Pure and Applied Mathematics 67 (2014), no. 11, 1877–1904.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SET-265

33 / 35

References II

M. Shastry, R. Narayanan, and M. Rangaswamy, *Sparsity-based signal processing for noise radar imaging*, IEEE Transactions on Aerospace and Electronic Systems **51** (2015), no. 1, 314–325.

Gongguo Tang, B.N. Bhaskar, and B. Recht, *Near minimax line spectral estimation*, IEEE Transactions on Information Theory, **61** (2015), no. 1, 499–512.

R. H. Walden, *Analog-to-digital converter survey and analysis*, IEEE Journal on Selected Areas in Communications **17** (1999), no. 4, 539–550.

(日) (同) (三) (三)

Parameter choice

Parameter	Value	
Bandwidth B	$500 imes 10^{6}$ Hz	
Range Interval	[0, 100]m	
Number of Range Bins N	334	
Unambiguous time interval t_u	$6.6 imes 10^{-7} \ \mathrm{s}$	
pulse duration $ au$	$6.86 imes10^{-5}s$	

・ こ つ へ へ
SET-265 35 / 35

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト